Меню

Обжиг цемента во вращающейся печи



Обжиг цемента во вращающейся печи

В качестве сырья для цемента используют известняк, к которому добавляют глину, кремнезем, окислы железа. Приготовленную (увлажненную, сухую или полусухую) смесь обжигают при 1450 °С и получают клинкер. Добавив небольшое количество гипса и подвергнув смесь тонкому измельчению, получают цемент.

Различают три способа получения цемента: мокрый, сухой и полусухой. Если в сырьевой порошок добавляют 30—40 % воды и готовят шихту в виде пульпы, то такой способ называют мокрым. Получение цемента при ограниченном введении воды считается полусухим, без добавления воды — сухим. Сухим способом получают цемент во вращающихся печах с циклонными теплообменниками.

Печи для обжига цементного клинкера делятся на шахтные и вращающиеся. В нижней части шахтной печи цилиндрической формы выполнена подина. Порошкообразный клинкер перед подачей в печь при добавлении небольшого количества воды превращают в окатыши с использованием тарелочного гранулятора. Приготовленные окатыши загружают в верхнюю часть печи. Топливом служит высококачественный кокс или антрацит. Шахтная печь имеет сравнительно высокий термический к. п. д., однако процесс обжига протекает неравномерно, что снижает качество клинкера. В настоящее время шахтные печи почти не применяются.

Вращающуюся печь изобрел англичанин Ф. Рэнсом в 1885 г. Это футерованный огнеупорами металлический цилиндр, опирающийся на роликовые опоры. Для передвижения обжигаемого материала в печи ее устанавливают под углом 4—5 град к горизонту. Печь вращается от электродвигателя. Горелки для сжигания топлива вмонтированы в откатную головку. Головку устанавливают у горячего (нижнего) конца печи. С противоположного, холодного (верхнего), конца продукты горения топлива попадают в пылесборную камеру, где очищаются от пыли.

Сырьевая смесь, загружаемая с холодного конца, движется при вращении печи навстречу продуктам горения топлива. Печь разделяется на несколько технологических зон, в которых материал проходит различные стадии обработки с последующим охлаждением.

Вращающиеся печи различаются по длине, способам утилизации тепла и подогрева сырья.

В коротких вращающихся печах длиной 70— 80 м тепловые потери в результате выпуска высоконагретых отходящих газов достигали 50 %. В связи

с изобретением котла-утилизатора в конце 19 в. и установкой его за печами тепло- потери резко снизились. Однако с появлением более производительных печей короткие печи больше не строят.

Длинные (150—200 м) вращающиеся печи по сравнению с короткими имеют большой термический к. п. д. Повышение теплоотдачи от газов обжигаемому материалу достигается за счет оснащения печей.теплообменными устройствами: жаропрочными цепными завесами, решетками, циклонами. В результате использования тепла отходящих газов с температурой

200 °С увеличились объемы обжигаемого материала. Производительность таких печей значительно возросла после ее автоматизации.

Сравнительно короткая вращающаяся печь Леполя соединена с движущейся решеткой, на которой подсушиваются загружаемые окатыши влажностью 12—13 %, диаметром 6—20 мм. Сушка и частичная кальцинация окатышей происходит вследствие теплообмена с отходящими печными газами. Обслуживание решетки связано с большими расходами, поэтому наметилась тенденция к уменьшению ее использования.

Вращающаяся печь SP с подвесным циклонным подогревателем сырья в кипящем слое показана на 263. Особенностью этой системы является эффективное использование тепла отходящих печных газов для подогрева загружаемого сырья. Сырье подают в подогреватель, состоящий обычно из четырех циклонов. Отходящие газы, движущиеся противотоком, контактируют с сырьем и отдают ему часть своего тепла. Одновременно с этим происходит 40—50 %-ная декарбонизация материала.

Вращающаяся печь NSP — усовершенствованная печь SP с увеличенным диаметром корпуса и большей обжиговой производительностью за счет присоединения нового вспомогательного устройства, которое устанавливают между корпусом печи и подогревателем. Первую печь такого типа ввели в действие в 1971 г. Производительность печи NSP в 1,5—2 раза выше, чем печи SP. Четыре разновидности вспомогательных устройств, работающих по принципу кипящего слоя, показаны на 264.

Благодаря присоединению нового вспомогательного устройства удалось интенсифицировать нагрев до уровня, необходимого для проведения реакций по декарбонизации до 85 % и выше. Таким образом, во вращающейся печи протекают только реакции по обжигу и образованию клинкера, что облегчает работу печи, исключает тепловые перегрузки и содействует продлению срока службы футеровки. Преимущества печи наглядно показаны на 265.

Технологическая схема производства цементного клинкера включает три этапа. Н а первом проводят подогрев порошкообразного сырья с 60 до 800 °С. На втором в связи с повышением температуры до 950 °С происходит кальцинация шихты с поглощением тепла по следующей реакции: СаС03—> (СаО) + (СОа) (430—490 ккал/кг цементного клинкера). И, наконец, на третьем этапе при нагреве с 950 до 1450 °С осуществляется обжиг со спеканием (с образованием расплава).

Согласно традиционному методу (способ SP) на 40—45 % шихта кальцинируется в подвесном циклонном подогревателе до поступления во вращающуюся печь. Таким образом, в основном кальцинация заканчивается в печи.

Новый метод (способ NSP) предусматривает расширение процесса кальцинации на этапе подогрева в результате подключения к подвесному подогревателю дополнительного нагревательного устройства. При комбинированном использовании двух подогревателей шихту кальцинируют до уровня 85—90 %, что позволяет повысить производительность обжига во вращающейся печи.

|Вращающаяся печь по своей длине, начиная от холодного конца, разделяется на несколько технологических зон: сушки и подогрева, кальцинирования, спекания и охлаждения. В каждой из указанных зон используются соответствующие условиям службы огнеупорные материалы. При этом необходимо учитывать, что вращение печи происходит в нагретом состоянии, поэтому ее футеровка более чувствительна к механическому и структурному растрескиванию, чем в стационарной печи. Во всех

Читайте также:  Чем развести цемент если нет песка

зонах на огнеупоры оказывает истирающее воздействие перемещающийся вдоль печи материал. В холодном конце материалы не размягчены и поэтому имеют неоплавлен- ные, с острыми гранями частицы, истирающие футерованный слой. Особенно сильному износу подвергаются выступающие изделия (кирпичи), которые кладут через определенные интервалы, чтобы улучшить перемешивание сырья.

Зону сушки и подогрева футеруют в основном шамотными изделиями с высоким сопротивлением износу (истиранию). В целях повышения теплового к. п. д. печи применяют гакже теплоизоляционные материалы.

Для футеровки зоны кальцинирования используют главным образом высокоглиноземистые изделия, устойчивые к температурному растрескиванию. В крупногабаритных печах, в частности печах с подогревателями, эту зону выкладывают основными изделиями.

Зона обжига подвергается’ наибольшему термическому воздействию. Рабочая температура в ней достигает (и превышает) 1600 °С. Помимо истирания, футеровка обжиговой зоны подвергается химическому воздействию. Поэтому здесь применяют высокоогнеупорные и химически неактивные материалы. Эту зону футеруют высоко- обожженными магнезиальнохромитовыми изделиями с прямой связью, а также магнезиальнохромитовыми изделиями на. керамической связке, подвергнутыми обычному обжигу.

В современных печах с подогревателями доля высокообожженных огнеупоров достигает 70 %. Процент применения обычных магнезиальнохромитовых изделий имеет тенденцию к снижению в связи с новыми более жесткими условиями (повышением температуры,’увеличением длины и диаметра печи). Особенно тяжелы условия эксплуатации обжиговой зоны на участке ближе к горелкам. Этот так называемый переходный участок подвергается воздействию высоких температур в условиях изменяющейся газовой среды, что приводит к нежелательным реакциям MgO-FeO

Mg0-Fe203, обусловливающим охрупчивание огнеупоров и снижение срока их службы. В связи с этим принимаются меры по соответствующей обработке сырья с целью упрочнения их структуры.

Кроме улучшенных магнезитохромитовых изделий с прямой связью, для футеровки переходного участка используют также огнеупоры на основе искусственной шпинели, более устойчивые к термическому растрескиванию. Отсутствие в шпинель- ных огнеупорах железистых компонентов способствует продлению срока службы футеровки переходного участка.

В зависимости от типа печной установки для зоны охлаждения используют очень широкий ассортимент огнеупорных материалов, а именно: магнезитохроми- товые, высокоглиноземистые, шамотные изделия, огнеупорные бетоны, пластичные массы, а также ряд огнеупорных материалов на основе SiC. Огнеупоры, используемые для футеровки зоны охлаждения, должны обладать высоким уровнем устойчивости к термическому растрескиванию, истиранию и оплавлению. У печи с большим диаметром эту зону выкладывают главным образом из основных кирпичей. Для футерования выгрузочного окна используют изделия, стойкие к действию термических и механических напряжений. Большой износ этого участка вызывает необходимость разработки более износоустойчивых огнеупорных материалов. Срок службы выгрузочного окна увеличивают, используя неформованные огнеупоры (огнеупорные бетоны, набивные массы), что вызывает необходимость улучшения крепежной арматуры.

Подогреватель футеруют шамотным кирпичом, наружную поверхность — теплоизоляционным. Широко используют и огнеупорные бетоны.

Головка вращающейся печи расположена со стороны выгрузочного окна. В головку вмонтированы горелки. Вследствие укрупнения габаритов печей и увеличения количества обжигаемого клинкера температура в головке печи повышается до 5*1500 °С, поэтому наряду с нормально обожженными магнезитохромитовыми изделиями используют высокоглиноземистые огнеупорностью 1850 °С. Головку малогабаритных печей футеруют высокоглиноземистыми изделиями огнеупорностью 1770— 1790 °С. Частично используют высокоглиноземистые огнеупорные бетоны.

Холодильник, расположенный в нижней части выгрузочного окна, предназначен Для быстрого охлаждения горячего клинкера, поступающего по желобу на решетки, обдуваемые снизу холодным воздухомт-Желоб холодильника футеруют высокоглиноземистыми изделиями огнеупорностью 1790—1880 °С. Применяют также основные изделия и огнеупорные бетоны. Высокотемпературные участки холодильника футе

руют высокоизносостойкими огнеупорными бетонами с высоким содержанием глинозема и шамотными изделиями. Среднетемператураую зону и ниже футеруют шамотными изделиями огнеупорностью 1710 °С.

Несмотря на увеличение диаметра корпуса вращающейся печи, ее термический к. п. д. остается низким, а срок службы огнеупоров — коротким. Использование подогревателей несколько снизило нагрузку на футеровку печи, но основные проблемы остались. Имеется тенденция более широкого внедрения шпиндельных огнеупоров для футеровки обжиговой зоны. Изучаются возможности перехода с формованных изделий на неформованные огнеупорные материалы, например при изготовлении футеровки подогревателя и холодильника. Актуальна также проблема защиты корпуса печи с точки зрения уменьшения теплового излучения. Эта проблема решается путем подбора огнеупоров с более низкой теплопроводностью, а также за счет увеличенного применения огнеупорных теплоизоляционных изделий.

проведенных специальных испытаний предлагает использовать для футеровки ковшей огнеупоры на основе А12О3 с добавками (до 22 %) MgO [Ю].

Кремнеземистые (динасовые) огнеупоры изготовляют из кварцевых пород (кварц, кварцит, кварцевый песок) с добавкой глины.

Кремнеземистые (динасовые) огнеупоры получают из кварцевых пород (кварц, кварцит, кварцевый песок) с добавкой глины.

Химический метод производства легковесных изделий мало распространен. ОГНЕУПОРНЫЕ МАТЕРИАЛЫ. Алюмосиликатные огнеупоры.

Состав и свойства огнеупорных изделий. Огнеупорами называются материалы и изделия, способные противостоять высокой температуре (от 1580°С и выше).

Предел прочности на сжатие огнеупоров определяется их структурой. Чем плотнее, мелкозернистее и однороднее структура огнеупорных изделий.

Огнеупорность различных изделий зависит главным образом от химико-минерального состава и определяется в основном огнеупорностью исходного сырья. Огнеупоры.

Для кладки ковшей обычно использовали огнеупоры системы Al2O3-SiO2: шамотные кирпичи (63 % SiO2; 29 % А12О3) и высокоглиноземистые кирпичи из боксита.

Керамические материалы и изделия получают из пластичной сырьевой массы путем ее формования, сушки и обжига при определенной температуре. Различают строительную и.

Читайте также:  Как очистить стену от цементного раствора

Алюмосиликатные огнеупоры в зависимости от содержания SiO2 и А12О3 в обожженном продукте разделяют на три вида: полукислые, шамотные, высокоглиноземистые.

Источник

ПЕЧИ СУХОГО СПОСОБА ПРОИЗВОДСТВА КЛИНКЕРА

ЛЕКЦИЯ №14

ТЕМА: ОБЖИГ СЫРЬЕВОЙ СМЕСИ. ПРОЦЕССЫ КЛИНКЕРООБРАЗОВАНИЯ

Обжиг— завершающая технологическая операция производства клинкера. В процессе обжига из сырьевой смеси определенного химического состава получают клинкер, состоящий из четырех основных клинкерных минералов.

В качестве установок для получения клинкера могут быть использованы различные по своей конструкции и принципу действия тепловые агрегаты.

Однако в основном для этой цели применяют вращающиеся печи, в них получают примерно 95% клинкера от общего выпуска, 3,5% клинкера получают в шахтных печах и оставшиеся 1,5% — в тепловых агрегатах других систем — спекательных решетках, реакторах для обжига клинкера во взвешенном состоянии или в кипящем слое.

Вращающиеся печи являются основным тепловым агрегатом как при мокром, так и при сухом способах производства клинкера.

Обжигательным аппаратом вращающейся печи является барабан, футерованный внутри огнеупорными материалами. Барабан установлен с наклоном на роликовые опоры.

С поднятого конца в барабан поступает жидкий шлам или гранулы. В результате вращения барабана шлам перемещается к опущенному концу. Топливо подается в барабан и сгорает со стороны опущенного конца. Образующиеся при этом раскаленные дымовые газы продвигаются навстречу обжигаемому материалу и нагревают его. Обожженный материал в виде клинкера выходит из барабана.

Рисунок14.1 — Технологическая схема получения цемента по мокрому способу: 1 — щековая дробилка; 2 — молотковая дробилка; 3 — склад сырья; 4 — мельница «Гидрофол»; 5 — мельница мокрого помола; 6 — вертикальный шламбассейн; 7 — горизонтальный шламбассейн; 8 — вращающаяся печь; 9 —холодильник; 10 — клинкерный склад; 11 — мельница; 12 — силос це­мента.

В качестве топлива для вращающейся печи применяют угольную пыль, мазут или природный газ. Твердое и жидкое топливо подают в печь в распыленном состоянии. Воздух, необходимый для сгорания топлива, вводят в печь вместе с топливом, а также дополнительно подают из холодильника печи. В холодильнике он подогревается теплом раскаленного клинкера, охлаждая последний при этом. Воздух, который вводится в печь вместе с топливом, называется первичным, а получаемый из холодильника печи — вторичным.

Образовавшиеся при сгорании топлива раскаленные газы продвигаются навстречу обжигаемому материалу, нагревают его, а сами охлаждаются. В результате температура материалов в барабане по мере их движения все время возрастает, а температура газов — снижается.

Сырьевой шлам, имеющий температуру окружающего воздуха, попадая в печь, подвергается резкому воздействию высокой температуры отходящих дымовых газов и нагревается.

Обжиг сырьевой смеси проводится при температуре 1 470°C в течение 2…4 часов в длинных вращающихся печах (3,6х127 м, 4×150 м и 4,5х170 м) с внутренними теплообменными устройствами, для упрощения синтеза необходимых минералов цементного клинкера. В обжигаемом материале происходят сложные физико-химические процессы.

Вращающуюся печь мокрого способа условно можно поделить на зоны:

· сушки (температура материала 100…200 °C — здесь происходит частичное испарение воды);

· подогрева (200…650 °C — выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента). Например, разложение каолинита происходит по следующей формуле: Al2O3∙2SiO2∙2H2O → Al2O3∙2SiO2 + 2H2O; далее при температурах 600…1 000 °C происходит распад алюмосиликатов на оксиды и метапродукты.

· декарбонизации (900…1 200 °C) происходит декарбонизация известнякового компонента: СаСО3 → СаО + СО2, одновременно продолжается распад глинистых минералов на оксиды. В результате взаимодействия основных (СаО, MgO) и кислотных оксидов (Al2O3, SiO2) в этой же зоне начинаются процессы твердофазового синтеза новых соединений (СаО∙ Al2O3 — сокращённая запись СА, который при более высоких температурах реагирует с СаО и в конце жидкофазового синтеза образуется С3А), протекающих ступенчато;

· экзотермических реакций (1 200…1 350 °C) завершается процесс твёрдофазового спекания материалов, здесь полностью завершается процесс образования таких минералов как С3А, С4АF (F — Fe2O3) и C2S (S — SiO2) — 3 из 4 основных минералов клинкера;

· спекания (1 300→1 470→1 300 °C) частичное плавление материала, в расплав переходят клинкерные минералы кроме C2S, который взаимодействуя с оставшимся в расплаве СаО образует минерал АЛИТ (С3S);

· охлаждения (1 300…1 000 °C) температура понижается медленно. Часть жидкой фазы кристаллизуется с выделением кристаллов клинкерных минералов, а часть застывает в виде стекла.

Основные минералы клинкера: алит, белит, трехкальциевый алюминат и аллюмоферит

Алит— самый важный минерал клинкера, определяющий быстроту твердения, прочность и другие свойства портландцемента; содержится в клинкере в количестве 45…60%. Он быстро твердеет и набирает высокую прочность, интенсивно выделяет тепло. Алит представляет собой твердый раствор трехкальциевого силиката и небольшого количества (2…4%) MgO, Al2O3, P2O5, Cr2O3 и других примесей, которые могут существенно влиять на структуру и свойства минерала.

Белит— второй по важности и содержанию (20…30%) силикатный минерал клинкера. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента; обладает малым тепловыделением. Белит в клинкере представляет собой твердый раствор b-двухкальциевого силиката (b-С2S) и небольшого количества (1…3%) Al2O3, Fe2O3, MgO, Cr2O3.

Трехкальциевый алюминат содержится в клинкере в количестве 4…12% и при благоприятных условиях обжига получается в виде кубических кристаллов размером до 10-15 мкм; образует твердые растворы сложного состава. Он очень быстро гидратируется и твердеет, но имеет небольшую прочность и наибольшую интенсивность тепловыделения. Является причиной сульфатной коррозии бетона, поэтому в сульфатостойком портландцементе содержание С3А ограничено 5%.

Читайте также:  Что такое цемент с точки зрения химии

Четырехкальциевый алюмоферрит в клинкере содержится в количестве 10. 20%. Алюмоферритная фаза промежуточного вещества клинкера представляет собой твердый раствор алюмоферритов кальция разного состава, в клинкерах обычных портландцементов ее состав близок к 4CaO×Al2O3×Fe2O3. По скорости гидратации минерал занимает промежуточное положение между алитом и белитом.

Наименование Формула Сокращенное обозначение Примерное содержание в клинкере, %
Алит (трехкальциевый силикат) 3CaO×SiO2 C3S 45-60
Белит (двухкальциевый силикат) 2CaO×SiO2 C2S 20-30
Трехкальциевый алюминат 3CaO×Al2O3 C3A 4-12
Целит (четырехкальциевый алюмоферрит) 4CaO×Al2О3×Fe2O3 C4AF 10-20

ПЕЧИ СУХОГО СПОСОБА ПРОИЗВОДСТВА КЛИНКЕРА

Печи сухого способа производства примерно в два раза короче печей мокрого способа при равной или даже большей производительности. Современные мощные печи этого способа имеют размеры: 6,4/7,0×95 м, 5×75 м и производительность 25 т/ч и 75 т/ч соответственно. Уменьшение длины печи связано с двумя основными факторами: во-первых, в печах сухого способа в принципе отсутствует зона сушки, во вторых, часть процессов выносится из печи в запечные теплообменные устройства (циклонные теплообменники, реактор-декарбонизатор или конвейерный кальцинатор).

В основу конструкций печей с циклонными теплообменниками положен принцип эффективного теплообмена между отходящими из печи дымовыми газами и частицами сырьевой муки, находящимися во взвешенном состоянии. Уменьшение размера частиц обжигаемого материала и увеличение его удельной поверхности, а также максимальное использование всей поверхности частиц для контакта с теплоносителем интенсифицируют теплообмен между ними. Этот способ передачи теплоты обеспечивает быстроту и равномерность нагрева и поэтому весьма эффективен. Во взвешенном состоянии при достижении температуры диссоциации декарбонизация СаСОз протекает также гораздо быстрее, чем при обжиге шихты в слое. Но все процессы, связанные с непосредственным контактом частиц-реагентов между собой (твёрдофазовые реакции, спекание), наоборот, замедляются.

Откорректированная сырьевая мука поступает в систему циклонных теплообменников. Отходящие из вращающейся печи газы с температурой 900-1000°С по газоходу 10 движутся в циклонный теплообменник IV ступени, а затем последовательно проходят циклонные теплообменники III, II и I ступеней, пылеулавливающее устройство и дымососом 9 через Дымовую трубу 1 выбрасываются в атмосферу.

В узких газоходах циклонных теплообменников средняя скорость газов составляет 15-20 м/с, что значительно выше скорости витания частиц сырьевой муки. Поэтому поступающая в газоход между I и II ступенями циклонов сырьевая мука увлекается потоком газов и выкосится в циклонный теплообменник I ступени, где материал подогревается, а газы охлаждаются. Осевший в циклоне материал через затвор-мигалку 11 поступает в газоход между II и III ступенью циклонов, а из него выносится с газовым потоком в циклон II ступени. Затем материал движется в газоходах и циклонах III и IV ступеней. Таким образом, сырьевая мука опускается вниз, проходя последовательно циклоны и газоходы всех ступеней, и при этом нагревается. По выходе из циклона IV ступени материал имеет температуру 700-800°С, затем он подаётся во вращающуюся печь 8 для дальнейшего обжига.

Время пребывания частиц сырьевой муки в циклонном теплообменнике не превышает 25-30 с, и за это очень короткое время материал нагревается, полностью дегидратируется глинистая составляющая сырьевой смеси, а также на 25-30% успевает пройти декарбонизация карбонатной породы. Таким образом, в циклонном теплообменнике осуществляются процессы, которые соответствуют зоне подогрева и частично зоне кальцинирования.

Вращающиеся печи с циклонными теплообменниками имеют высокие технико-экономические показатели, длительный срок службы, просты по конструкции и надёжны в эксплуатации (отсутствие Движущихся элементов), они отличаются высоким коэффициентом использования. Основным недостатком данного теплообменного Устройства является большая высота циклонной башни — 50-60 м.

Наиболее современными являются технологии, основанные на трёхступенчатом обжиге, которые позволяют направлять в обжиговую печь материал который декарбонизирован почти ПОЛНОСТЬЮ. Для интенсификации процесса диссоциации CaСО3 между запечным теплообменником и печью устанавливается специальный реактор – диссационная ступень (декарбонизатор), представляющая собой печь специальной конструкции с вихревой форсункой, где происходит сжигание топлива и декарбонизация сырьевой муки в вихревом потоке

Температура материала на входе в реактор составляет 720-750С. В результате сгорания дополнительного количества топлива температура газового потока повышается до 1000-1050, а материал нагревается до температуры 920-950. Каждая Частица материала находится в системе «циклонный теплообменник — Диссоционный реактор» всего 70-75 с, но по выходе из нее степень его декарбонизации составляет 85-95%.

Установка диссоционной ступени позволяет повысить съем клинкера с 1 м3 внутреннего объёма печи в 2,5-3 раза, в результате печь диаметром 5-5,5 м может иметь производительность 6000-8000 т/сут удельный расход теплоты снижается до 3-3,1 кДж/кг клинкера. Размеры реактора невелики, он может быть использован не только при строительстве новых линий, но и при модернизации уже существующих коротких вращающихся печей с циклонными теплообменниками.

Рисунок 14.2 — Технологическая схема получения цемента по сухому способу: 1 — бункер известняка; 2 — щековая дробилка; 3 — молотковая дробилка; 4 — бункер глины; 5 — валковая дробилка; 6 — объединенный склад сырья; 7 — мельница «Аэрофол»; 8 — циклон-осадитель; 9 — промежуточный силос; 10 — сепаратор; 11 — мельница; 12 — гомогенизационный силос; 13 — запасной силос; 14 — печь с циклонными теплообменниками; 15 — холодильник; 16 — склад клинкера и добавок; 17 — мельница; 18 — цементный силос.

Источник