Меню

Коррозия цементного камня второго вида



Коррозия цементного камня

Коррозия цементного камня проявляется при действии на него агрессивных жидкостей и газов. Наиболее уязвимыми с точки зрения коррозии продуктами гидратации портландцемента являются портландит Са(ОН)2 и гидроалюминат кальция 3СаО·Al2O3·6H2O. Коррозионные процессы в цементном камне в зависимости от причины принято разделять на 3 группы:

Коррозия I вида – растворение составляющих цементного камня, вымывание гидроксида кальция (коррозия выщелачивания). Гидроксид кальция Са(ОН)2 является водорастворимым соединением, а его содержание составляет 10…15% (до 20%) от всех продуктов гидратации портландцемента. Его вымывание происходит весьма интенсивно при действии на цементный камень мягких вод. После вымывания свободного гидроксида кальция начинается разложение гидросиликатов кальция 3СаО·2SiO2·3H2O. Выщелачивание портландита в количестве 15…30% от общего содержания приводит к снижению прочности цементного камня на 40..50% и более.

Основным методом борьбы с коррозией выщелачивания является введение в портландцемент активных минеральных добавок, связывающих водорастворимый портландит в низкоосновные водонерастворимые гидросиликаты кальция. Повысить стойкость бетона к коррозии выщелачивания можно также путем снижения проницаемости бетона за счет использования химических добавок – пластификаторов, гидрофобизаторов и др.

Коррозия II вида – образование легкорастворимых солей при взаимодействии составляющих цементного камня с агрессивными веществами и их вымывание. К данному виду коррозии относят:

Кислотная коррозия проявляется при действии на цементный камень растворов кислот с pH

• В результате данной реакции образуется эттрингит, который занимает в 2…2,5 раза больший объем по сравнению с исходными компонентами реакции. Как было отмечено выше, в процессе твердения портландцемента образование эттрингита играет положительную роль, поскольку его игловидные кристаллы уплотняют структуру и упрочняют цементный камень.

• Образование эттрингита в затвердевшем цементном камне приводит к появлению внутренних растягивающих напряжений и растрескиванию цементного камня (в данном случае эттрингит называют «цементной бациллой»). В железобетонных конструкциях растрескивается, прежде всего, защитный слой бетона, после чего начинается коррозия стальной арматуры. Возможность сульфоалюминатной коррозии всегда необходимо учитывать при строительстве морских сооружений. Основным способом борьбы с сульфоалюминатной коррозией является использование сульфатостойкого портландцемента.

К коррозии III вида относится также щелочная коррозия, которая может происходить под влиянием двух факторов. Первый фактор – непосредственное воздействие щелочи на цементный камень. В этом случае после высыхания насыщенного щелочью бетона, под влиянием углекислого газа в порах бетона образуется сода и поташ, которые, кристаллизуясь, увеличиваются в объеме и разрушают цементный камень. Второй фактор – взаимодействие щелочей цементного камня с реакционноспособными примесями, содержащимися в заполнителях, в особенности, в песке (например, опал, халцедон, вулканическое стекло). Данный вид коррозии может проявляться в появлении трещин, шелушении и вспучивании поверхности бетона.

Дата добавления: 2016-11-22 ; просмотров: 5057 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Классификация вяжущих веществ. Виды коррозии цементного камня, меры защиты от коррозии. Строительно-эксплуатационные свойства стеновых изделий, страница 2

Использование гипса для производства цемента

В состав цемента входит множество разных ингредиентов. Прежде всего, его основу составляют минеральные породы в форме мельчайшей крошки — мел, известняк, доломит, кальциты и другие вещества карбонатной группы. Также при производстве используются глина, суглинок, сланцы, лесс и прочие глинистые породы. С точки зрения химии в составе цемента можно выявить оксиды многих металлов и неметаллов — алюминия, магния, железа, кремния, кальция.

В процессе создания цемента все компоненты соединяются, сушатся, перемалываются в пыль, после прогреваются при высокой температуре. В результате получается клинкер, который опять дробится до мельчайших частиц. Далее в него вводятся синтетические модификаторы и улучшители свойств цемента.

В качестве добавок к материалу может выступать и гипс в объеме до 3-6% от общего веса (после приготовления цементной массы). В такой форме он прибавляет раствору прочности и не оказывает вредного воздействия.

Реферат: Коррозия цементного камня и способы защиты

Выполнила: Костомарова И.А.

III курс, ВиВ (заочный)

г. Москва, 2009 г.

В настоящее время цемент является одним из важнейших строительных материалов. Его применяют для изготовления бетонов, бетонных и железобетонных изделий, строительных растворов, асбестоцементных изделий. Изготовляют его на крупных механизированных и автоматизированных заводах. Цемент

начали производить в прошлом столетии. В начале 20-х годов XIX в. Е. Делиев получил обжиговое вяжущее из смеси извести с глиной и опубликовал результаты своей работы в книге, изданной в Москве в 1825 г. В 1856 г. был пущен первый в России завод портландцемента. Портландцемент является минеральным вяжущим веществом, составляющим основу большей части номенклатуры сухих строительных смесей в качестве самостоятельного вяжущего, в смешанных цементных вяжущих системах, в составе цементно-известковых вяжущих, а также различных полимерцементных композиций. Ценные и уникальные свойства портландцемента определяются его способностью при затворении водой образовывать пластичное тесто, со временем, самопроизвольно, за счёт химического взаимодействия в системе, превращающееся в камень. Способность к самоотвердеванию, образование прочного и долговечного камня, экологическая чистота, низкая химическая опасность, пожаровзрывобезопасность в сочетании с низкой стоимостью являются предпосылками для широкого практического применения портландцемента.

Бетоны и цементный камень, как его матричная часть, в эксплуатационных условиях подвержены коррозионному воздействию различных сред, особенно минерализованной воды в морских сооружениях (молы, причалы, эстакады со свайным основанием и железобетонным верхним строением, портовые конструкции и др.), минеральной кислоты при эксплуатации резервуаров, башен и других сооружений химической промышленности. На бетон оказывают коррозионное воздействие органические кислоты и биосфера, особенно при работе сооружений в торфяных грунтах, на предприятиях пищевой промышленности. Негативное влияние могут оказывать на состав и структуру цементного камня в бетонах щелочная среда, пресная вода, особенно водные растворы электролитов. В индустриальных районах коррозионное влияние на бетонные конструкции оказывают газы, например сернистые, сероводород, хлористый водород, аэрозоли солей, например морской воды и др. Агрессивное воздействие оказывают также твердые, в основном высокодисперсные вещества, способные образовывать во влажных условиях прослойки из истинных и коллоидных растворов. Кроме химических реакций при контакте со средой возможны физические сорбционные процессы с поглощением из среды поверхностно-активных веществ (ПАВ), например серосодержащих полярных смол из нефтепродуктов, с физическим нарушением сплошности контактов в структуре и ускорением развития дефектов.

Читайте также:  Чем можно покрасить цемент

Коррозия цементного камня. Виды коррозии

Различают физическую, химическую, электрохимическую и биологическую коррозии.

Это выветривание, растворение, разрушение вследствие температурных колебаний характерных для всех видов горных пород.

Коррозии растворения носит физико-химический характер (см. ниже коррозии выщелачивания).

Агрессивными по отношению к цементному камню являются все кислоты и многие соли.

Этот вид коррозии имеет место чаще всего, а разрушение происходит наиболее интенсивно. Самым уязвимым веществом в цементном камне является известь. Однако связывание извести (скажем за счет SiO2 ) еще не исключает коррозии, поскольку она может восстанавливаться за счет отступления от гидратов кальция.

Кислоты и некоторые соли вступают в реакцию с Са(ОН)2 и образуют новые соединения, либо легко растворимые в воде, либо непрочные рыхлые, либо кристаллизующиеся со значительным

Изменением объема. Иногда это все происходит одновременно.

Все кислоты разрушают портландцементный камень

Са(ОН)2 + НСl = CaCl + 2 H2 O

Са(ОН)2 + H2 SO4 = CaSO4 + 2H2 O

Хлористый кальций легко растворим, а CaSO4 может вступать во вза-имодействие с гидроаллюминатами кальция и образовывать гидросульфоаллюминат кальция. Последний кристаллизуется с увеличением объема.

Гипс также кристаллизуется с увеличением объема.

Хотя в пластовых водах нет непосредственно соляной и серной кислот, (но их образование можно предположить), зато имеется достаточное количество солей агрессивных по отношению к цементному камню. К таким солям относятся сульфаты (MgSO4 , CaSO4 ), хлориды (MgCl2 , CaCl2 ).

Агрессивный сероводород и углекислый газ, которые могут содержаться как в пластовых водах, так и в добываемых нефти и газе.

Рассмотрим основные виды химической коррозии и применение в связи с ними цементов.

Кристаллогидраты (гидросиликаты, алюминаты и ферриты кальция), образующиеся при взаимодействии с водой клинкерных минералов и составляющие вместе с наполнителями цементный камень, имеют значительную равновесную растворимость в воде. Это значит, что они остаются устойчивыми при контакте с водами, только в том случае, если в воде имеется достаточная концентрация Са(ОН)2 . Если концентрация в воде Са(ОН)2 ниже равновесной, то у гидрата будут отщепляться молекулы извести и концентрация будет восстанавливаться до равновесной.

Гидросиликаты и гидроалюминаты кальция имеют тем большую равновесную растворимость, чем выше их основность. Следовательно отщепление гидратов сначала происходит от высокоосновных гидратов, их основность при этом понижается, а устойчивость в данной среде повышается.

Если концентрация гидрата окиси кальция в дальнейшем не будет понижаться, то процесс на этом остановится. Если же концентрация извести будет продолжать понижаться и станет ниже равновесной для вновь образовавшегося гидрата, то отщепление гидрата окиси кальция будет продолжаться вплоть до полного разложения гидросиликатов и гидроалюминатов, с образованием аморфных кремнезема и глинозема. Хотя последние и плохо растворимы в воде, однако они не обладают вяжущими свойствами – прочность и монолитность камня нарушаются.

Эти процессы могут наблюдаться, если цементный камень омывается непрерывно обновляющейся водой или растворами солей, имеющими малую концентрацию Са(ОН)2 , либо если Са(ОН)2 связываются содержащимися в растворе веществами в прочные малорастворимые или малодиссоциирующие химические соединения (кальция).

Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок.

Эттрингит, или «цементная бацилла»

Частные «специалисты», а также новички в сфере строительства и ремонта нередко вводят в бетонную смесь значительную долю гипса или алебастра с целью получения пластичного универсального раствора, который можно будет накладывать более толстым слоем. По их мнению, с помощью такого состава можно сразу избавиться от крупных дефектов и за один подход выровнять поверхность. Кроме того, время застывания раствора должно серьезно сократиться, что повысит общую скорость ремонтных работ в разы.

Что происходит в ходе таких действий внутри цементного раствора на химическом уровне? После введения воды начинается реакция входящих в состав цемента алюминатов с полуводным гипсом. В итоге формируется гидросульфоалюминат кальция, или эттрингит — минерал с беловатым или желтоватым цветом, производное алюминия и кальция, сульфат.

Данный камень раньше называли «цементной бациллой». Он имеет кристаллическую структуру, причем отдельные кристаллы сильно растут при наборе прочности и разрушают сам цемент.

Последствия соединения гипса и цемента

После введения гипса в цементную смесь уже спустя 1-5 суток на камне начинают формироваться целые россыпи микротрещин. Противостоять появлению эттрингита в ходе гидратации невозможно. Более того, процесс постоянно нарастает по мере воздействия на материал влаги из осадков, воздуха.

Цементный камень все равно разрушится в ближайшем будущем. Кроме того, при использовании металлической сетки для армирования стен она заржавеет, так как из-за присутствия гипса смесь станет аккумулировать влагу. На поверхности отделки выступят некрасивые пятна ржавчины.

ВИДЫ КОРРОЗИИ ЦЕМЕНТНОГО КАМНЯ

Коррозия цементного камня в водных условиях по ряду ведущих признаков может быть разделена на три вида:

Читайте также:  Расчет цемента под заливку полов

Первый вид коррозии — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наиболее растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката. Растворимость Са(ОН)2невелика (1,3 г СаО на 1 л при 15°С), но из цементного камня в бетоне под воздействием проточных мягких вод количество растворенного и вымытого Са(ОН)2 непрерывно растет, цементный камень становится пористым и теряет прочность. В этом виде коррозии объединены все те процессы коррозии, которые возникают в бетоне при воздействии мягких вод, когда составные части цементного камня растворяются и уносятся протекающей водой. Особое развитие коррозия бетона I вида получает при фильтрации воды через бетон.

Несколько предохраняет от данного вида коррозии защитная корка из углекислого кальция, образующаяся на поверхности бетона в результате реакции между гидроксидом кальция и углекислотой воздуха

Са (ОН)2 + СО2 = СаСОз + Н2О

Второй вид коррозии — разрушение цементного камня водой, содержащей соли, способные вступать в обменные реакции с составляющими цементного камня. При этом образуются продукты, которые либо легкорастворимы, либо выделяются в воде аморфной массы, не обладающей связующими свойствами. В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность. С физико-химической точки зрения коррозия II вида включает в себя следующие процессы:

— проникание агрессивного вещества из раствора в пористую структуру бетона;

— химическое взаимодействие агрессивного вещества с компонентами цементного камня с образованием растворимых (или аморфных) продуктов;

— вынос растворимых продуктов реакции из бетона.

Наиболее часто встречающаяся при действии природных вод коррозия бетона – коррозия под действием углекислых вод. Углекислота Н2СО3 присутствует, как правило, во всех водах. Источником обогащения воды углекислотой являются биохимические процессы, протекающие в воде и в почве. Необходимо отметить, что чем больше агрессивной Н2СО3, тем выше кислотные свойства раствора и скорость коррозии.

К третьему виду коррозии относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементного камня. Их накопление и кристаллизация в порах вызывают значительные растягивающие напряжения в стенках пор и приводит к разрушению цементного камня. Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкальциевым гидроалюминатом:

ЗСаО • А12О3 • 6Н2О + 3CaSO4 + 25H2O = ЗСаО • А12О3 • 3CaSO4 • 31Н2О

При этом образуется труднорастворимый гидросульфоалюминат кальция, который, кристаллизуясь, поглощает большое количество воды и значительно увеличивается в объеме (примерно в 2,5 раза), что оказывает сильное разрушающее действие на цементный камень. Отличительными признаками коррозии III вида являются накопление в порах и капиллярах бетона кристаллических продуктов взаимодействия цементного камня со средой, возникновение внутренних напряжений, вызывающих разрушение цементного камня и бетона.

Такими кристаллическими продуктами при воздействии сульфатов на бетон являются гипс и гидросульфатоалюминат кальция, встречающийся в двух модификациях:

Эти химические реакции сопровождаются увеличением объёма твёрдых фаз соответственно в 2,6 и 5,1 раза.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходимого содержания активных минеральных добавок.

Предотвращение проблем и применение гипсово-цементной смеси

При нанесении цементного раствора с добавлением гипса на кирпичную стену, которая располагается внутри здания, можно спасти ситуацию довольно просто. Достаточно наложить слой стандартной цементной финишной штукатурки или шпаклевки. Это защитит материал от контакта с влагой и предотвратит появление эттрингита. Если стена бетонная или выходит наружу, такой подход не будет результативным.

Химическая реакция неизбежна, и даже при ее медленном развитии отделка прослужит максимум 5 лет, да и то при условии неподверженности покрытия регулярному воздействию влаги. В качестве фасадного оформления цемент полностью разрушится после первой же зимы.

Чтобы устранить риск появления эттрингита, в композицию «гипс плюс цемент» вводят специальные пуццолановые добавки с кремнеземом в активной форме. Они могут быть природными (диатомит, трепел, опока) или синтетическими по происхождению (кислые доменные шлаки, метакаолин, белая сажа, микрокремнезем).

При добавлении этих веществ падает концентрация гидрооксида кальция в растворе, поэтому цементная бацилла не появляется. При изготовлении раствора с таким составом получается ГЦПВ — гипсо-цементно-пуццолановое вяжущее.

ГЦПВ активно применяется при производстве бетонов, прочность которых составляет 15-80 МПа, морозостойкость — 25-300 циклов и даже более. В таких бетонах тщательно подобраны пропорции основных компонентов, а также пуццолановых добавок, пластификаторов, наполнителей. Подобный бетон отверждается уже за 60 минут, а прочен настолько, что может служить сырьем для изготовления искусственного камня для фасадов.

При самостоятельном заведении ГЦПВ тоже возможно пользоваться кремнеземными добавками, но результат часто бывает непредсказуемым. Во избежание последствий лучше применять заводские смеси и строго соблюдать технологию, что напрямую влияет на качество и долговечность результата.

Коррозия цементного камня и бетона. Виды коррозии

Бетон– искусственный камень, получаемый в результате твердения рационально подобранной смеси, состоящей из вяжущего вещества, воды, крупного и мелкого заполнителя (щебня, гравия и песка).

Коррозия выщелачивания представляет собой вымывание гидроксида кальция, особенно в условиях постоянной фильтрации воды через массу бетона. Коррозия идет наиболее интенсивно при воздействии слабоминерализованной, мягкой, воды, в результате чего на поверхности образуются натеки Ca(OH)2.

Читайте также:  Цемент для облицовки фасада

Сульфатная коррозия возникает при проникновении в поры бетона сульфатов кальция, натрия и магния, которые при гидратации образуют многоводные кристаллогидраты Na2SO4×10H2O, MgSO4×7H2O, CaSO4×2H2O. Рост кристаллогидратов сопровождается их увеличением в объеме и возникновением кристаллизационного давления, которое и разрушает поры бетона. Наибольшей разрушающей способностью обладает гидросульфоалюминат кальция (эттрингит), или «цементная бацилла», которая образуется по уравнению

3CaO×Al2O3×6H2O + 3CaSO4 + 25H2O ® 3CaO×Al2O3×3CaSO4×31H2O

Магнезиальная коррозия идет в результате действия растворимых солей магния, которые взаимодействуют с гидроксидом кальция:

Ca(OH)2 + MgCl2 ® CaCl2 + Mg(OH)2

В результате этого процесса образуется хорошо растворимый хлорид кальция и аморфный гидроксид магния.

Кислотная коррозия бетона особенно интенсивно протекает под воздействием сильных кислот HNO3, H2SO4, HCl, даже очень разбавленные растворы которых разрушают строительный материал в короткие сроки. Хлоридная коррозия бетона идет под воздействием хорошо растворимых соединений, образованных соляной кислотой. Растворы поваренной соли (NaCl) интенсивно разрушают бетон и цементно-песчаные кладочные растворы.

Керамика– общее название всех изделий из обожженной глины. Химический состав глин принято выражать следующими оксидами: SiO2, Al2O3, CaO, MgO, Fe2O3, FeO, TiO2, K2O, Na2O, SO3.

Вода содержится в глинах как в свободном, так и химически связанном виде, входит в состав глинообразующих минералов.

Минералогический состав глин как в качественном, так и в количественном отношении разнообразен и может быть представлен следующими минералами:

K2O×MgO×4Al2O3×7SiO2×2H2O иллит (гидрослюда)

Солевые налеты на обожженном строительном и лицевом кирпиче образуются при взаимодействии Ca(OH)2 и CaСO3, содержащих в глине (кирпиче-сырце), с сернистым газом, присутствующим в дымовых газах. Разбавленные воздухом дымовые газы играют роль теплоносителя при сушке сырца. Сернистый газ сначала взаимодействует с влагой сырца, образуя сернистую кислоту:

H2O + SO2 = H2SO3

затем сернистая кислота окисляется до серной:

2H2SO3 + O2 = 2H2SO4

Далее на поверхности кирпича-сырца идут реакции, приводящие к образованию нерастворимого сульфата кальция (ангидрита):

Ca(OH)2 + H2SO4 ® CaSO4 + 2H2O

CaСO3 + H2SO4 ® CaSO4 + 2H2O + СO2­

Высолы на кирпичной кладке в процессе ее сооружения могут образовываться через 7–10 сут после ее возведения. Главные причины образования высолов – растворимые соли, содержащиеся в кирпиче и кладочном растворе, и атмосферные осадки. Миграция растворимых солей на открытую поверхность кладки приводит к образованию высолов, состав которых разнообразен: Na2SO4 (тенардит), Na2SO4×10H2O (мирабилит), CaSO4×2H2O (гипс), Na2SO4×CaSO4 (глауберит), CaSiO3 (волластонит) и др.

Солевая коррозия кирпичной кладки возникает в результате кристаллизации в порах кирпича и кладочного раствора многоводных кристаллогидратов, которые могут иметь следующий состав: Na2SO4×10H2O, Mg SO4×7H2O, Na2СO3×10H2O, CaCl2×6H2O. Механизм разрушения аналогичен таковому при сульфатной коррозии бетона. Рост в объеме перечисленных кристаллогидратов приводит к возникновению кристаллизационного давления от 0,09 до 0,44 МПа, которое является причиной деструкции материалов кирпичной кладки.

20.1. Содержание пирита в глине составляет 0,5 % мас. При обжиге глины пирит окисляется до оксида серы (IV) и оксида железа (III) . Сколько литров газа, приведенного к н. у., выделится при обжиге 500 кг глины? Написать уравнение окислительно-восстановительной реакции.

20.2. Содержание пирита в глине составляет 0,5 % мас. Рассчитать, сколько граммов серы находится в 400 кг глины.

20.3. При гидратации и гидролизе трехкальциевого силиката (минерала цементного клинкера) образуются двухкальциевый гидросиликат и гидроксид кальция. Написать уравнение реакции и рассчитать, какое количество Cа(ОН)2 образуется из 22,8 г 3СаО×SiO2.

20.4. На поверхности бетона в результате выщелачивания образовался натек гидроксида кальция, масса которого составляет 0,74 г. В дальнейшем Ca(OH)2 взаимодействует с СО2 и водой с образованием Ca(HCO3)2. Написать уравнения соответствующих реакций. Рассчитать, сколько литров СО2 (н. у.) пойдет для карбонизации указанного количества Ca(ОН)2.

20.5. При термической диссоциации кальцита (известняка) выделяются углекислый газ и оксид кальция (негашеная известь). Написать уравнение реакции и рассчитать массу выделяющегося СО2 при диссоциации 75 кг кальцита.

20.6. На приготовление известково-песчаного кладочного раствора израсходовано 150 кг гашеной извести. Написать уравнение твердения известкового раствора и рассчитать, сколько литров СО2 (н. у.) пошло на карбонизацию 100 кг гашеной извести.

20.7. Для связывания растворимых солей (сульфатов) в глине в керамическую шихту вводится карбонат бария. Написать уравнение реакции взаимодействия сульфата натрия с ВаСО3 и рассчитать его количество, необходимое для нейтрализации 142 г Na2SO4, содержащегося в глиномассе.

20.8. Вычислить содержание, в % мас., каждого из элементов в соединениях кальцита, пирита, поташа.

Ответ: а) 40, 12, 48 %; б) 47, 53 %; в) 56,5; 8,7; 34,8 %.

20.9. Кальцит разлагается при нагревании на оксид кальция и оксид углерода (II). Какая масса кальцита, содержащего 90 % мас. карбоната кальция, потребуется для получения 7,0 т негашеной извести?

20.10. Хлорид бария вводится в глиномассу для связывания растворимых сульфатов. Найти формулу кристаллогидрата хлорида бария, зная, что 36,6 г хлорида при прокаливании теряет в массе 5,4 г.

20.11. Антрацит используется при обжиге глиняного кирпича. Установлено, что при сжигании 3 г антрацита выделяется 5,3 л СО2, измеренного при н. у. Сколько процентов углерода (по массе) содержит антрацит?

20.12. Для повышения коррозионной стойкости бетона в строительную смесь вводится мелкозернистый кремнезем, переводящий растворимый гидроксид кальция в силикат. Какое количество кремнезема необходимо ввести в бетонную смесь, чтобы связать 180 г Са(ОН)2? Написать уравнение реакции.

20.13. Исходя из уравнения реакции взаимодействия негашеной извести с водой (написать уравнение реакции) определить теплоту образования гашеной извести, используя данные табл. 4 приложения.

Источник