Меню

Коррозия разрушение цементного камня



ВИДЫ КОРРОЗИИ ЦЕМЕНТНОГО КАМНЯ

Коррозия цементного камня в водных условиях по ряду ведущих признаков может быть разделена на три вида:

Первый вид коррозии — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наиболее растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката. Растворимость Са(ОН)2невелика (1,3 г СаО на 1 л при 15°С), но из цементного камня в бетоне под воздействием проточных мягких вод количество растворенного и вымытого Са(ОН)2 непрерывно растет, цементный камень становится пористым и теряет прочность. В этом виде коррозии объединены все те процессы коррозии, которые возникают в бетоне при воздействии мягких вод, когда составные части цементного камня растворяются и уносятся протекающей водой. Особое развитие коррозия бетона I вида получает при фильтрации воды через бетон.

Несколько предохраняет от данного вида коррозии защитная корка из углекислого кальция, образующаяся на поверхности бетона в результате реакции между гидроксидом кальция и углекислотой воздуха

Второй вид коррозии — разрушение цементного камня водой, содержащей соли, способные вступать в обменные реакции с составляющими цементного камня. При этом образуются продукты, которые либо легкорастворимы, либо выделяются в воде аморфной массы, не обладающей связующими свойствами. В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность. С физико-химической точки зрения коррозия II вида включает в себя следующие процессы:

— проникание агрессивного вещества из раствора в пористую структуру бетона;

— химическое взаимодействие агрессивного вещества с компонентами цементного камня с образованием растворимых (или аморфных) продуктов;

— вынос растворимых продуктов реакции из бетона.

Наиболее часто встречающаяся при действии природных вод коррозия бетона – коррозия под действием углекислых вод. Углекислота Н2СО3 присутствует, как правило, во всех водах. Источником обогащения воды углекислотой являются биохимические процессы, протекающие в воде и в почве. Необходимо отметить, что чем больше агрессивной Н2СО3, тем выше кислотные свойства раствора и скорость коррозии.

К третьему виду коррозии относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементного камня. Их накопление и кристаллизация в порах вызывают значительные растягивающие напряжения в стенках пор и приводит к разрушению цементного камня. Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкальциевым гидроалюминатом:

При этом образуется труднорастворимый гидросульфоалюминат кальция, который, кристаллизуясь, поглощает большое количество воды и значительно увеличивается в объеме (примерно в 2,5 раза), что оказывает сильное разрушающее действие на цементный камень. Отличительными признаками коррозии III вида являются накопление в порах и капиллярах бетона кристаллических продуктов взаимодействия цементного камня со средой, возникновение внутренних напряжений, вызывающих разрушение цементного камня и бетона.

Такими кристаллическими продуктами при воздействии сульфатов на бетон являются гипс и гидросульфатоалюминат кальция, встречающийся в двух модификациях:

Эти химические реакции сопровождаются увеличением объёма твёрдых фаз соответственно в 2,6 и 5,1 раза.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходимого содержания активных минеральных добавок.

Источник

Коррозия цементного камня и способы замедления процессов разрушения камня.

Коррозию цементного камня и бетона подразделяют на три основных вида в зависимости от механизма разрушения структуры:

Читайте также:  Защита цементного пола от пыли

коррозия I вида обусловлена растворением и вымыванием некоторых его составных частей̆ (коррозия выщелачивания);

коррозия II вида обусловлена воздействием агрессивных веществ, которые, вступая во взаимодействие с составными частями цементного камня, образуют либо легкорастворимые и вымываемые водой̆ соли, либо аморфные массы, не обладающие связующими свойствами;

коррозия III вида объединяет процессы, при которых компоненты цементного камня, вступая во взаимодействиt с агрессивной̆ средой, образуют соединения, занимающие больший объем, чем исходные продукты реакции

1 вид При действии воды на цементный камень вначале растворяется и уносится водой свободный Ca(OH)2, содержание которого в цементном камне через 1-3 месяца твердения достигает 10. 15%, а растворимость при обычных температурах 1,3 г/л.

После вымывания свободного гидроксида кальция и снижения его концентрации ниже 1,1 г/л начинается разложение гидросиликатов, а затем гидроалюминатов и гидроферритов кальция. В результате выщелачивания повышается пористость цементного камня и снижается его прочность.

Процесс коррозии первого вида ускоряется, если на цементный камень действует мягкая вода или вода под напором.

Для предупреждения коррозии I вида необходимо: 1.Создать бетоны повышенной плотности за счет интенсивного уплотнения цементного камня;

2.Использовать цементы с ограниченным содержанием C3S;

3.Вводить в цемент тонкомолотые минеральные добавки которые связывает гидроксид кальция в нерастворимые соединения

Са(ОН)2 + SiO2(аморф.) + mH2O = CaO·SiO2nН2О. 4.Использовать пуццолановый цемент;

5.Карбонизация поверстного слоя бетона, путем выдерживания его на воздухе; 6Гидроизоляция поверхности цементного камня в виде оклейки, облицовки или пропитки поверхностного слоя гидроизоляционными материалами.

II вид: К разновидностям коррозии второго относятся

кислотная, магнезиальная коррозия, коррозия под влиянием некоторых органических веществ и т. п.

Кислотная коррозия возникает при действии растворов любых кислот, за исключением поликремниевой и кремнефтористоводородной.

Кислота вступает в химическое взаимодействие с Ca(OH)2, образуя растворимые соли (например, СаСl2) и соли, увеличивающиеся в объеме (CaSO42H2O)

Меры защиты от кислотной коррозии: При слабой кислотной коррозии (рН=4-6) цементный камень защищают кислотостойкими материалами (окраской, пленочной изоляцией и т. п.). По стойкости к действию кислот слабой концентрации цементы можно расположить в таком порядке: глиноземистый цемент, пуццолановый ПЦ и обычный ПЦ.

При сильной кислотной коррозии (рН

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник

Лекция 4. Коррозия цементного камня и меры борьбы с ней

Бетон в инженерных сооружениях в процессе эксплуатации может быть подвержен агрессивному воздействию внешней среды: пресных и минерализованных вод, совместному действию воды и мороза, попеременному увлажнению и высушиванию. Среди компонентов бетона цементный камень наиболее подвержен развитию коррозионных процессов. Для того чтобы бетон стойко сопротивлялся агрессивному воздействию внешней среды, цементный камень должен быть коррозие-, морозо- и атмосферостойким.

Коррозия цементного камня в водных условиях по ряду ведущих признаков может быть разделена на три вида:

I вид коррозии — разрушение цементного камня в результате растворения и вымывания некоторых его составных частей. Наиболее растворимой является гидроксид кальция, образующийся при гидролизе трехкальциевого силиката. Растворимость Са(ОН)2 невелика (1,3 г СаО на 1 л при 15°С), но из цементного камня в бетоне под воздействием проточных мягких вод количество растворенного и вымытого Са(ОН)2 непрерывно растет, цементный камень становится пористым и теряет прочность.

Читайте также:  Цемент ciment fondu lafarge

Существенное повышение стойкости цементного камня в пресных водах достигается введением в цемент гидравлических добавок. Они связывают Са(ОН)2 в малорастворимое соединение — гидросиликат кальция:

Следующей мерой защиты бетона от I вида коррозии является применение цемента, выделяющего при своем твердении минимальное количество свободной Са(ОН)2. Таким цементом является белитовый, содержащий небольшое количество трехкальциевого силиката.

II вид коррозии — разрушение цементного камня водой, содержащей соли, способные вступать в обменные реакции с составляющими цементного камня. При этом образуются продукты которые либо легкорастворимы и уносятся фильтрующей через бетон водой, либо выделяются в воде аморфной массы, не обладающей связующими свойствами. В результате таких преобразований увеличивается пористость цементного камня и, следовательно, снижается его прочность.

Наиболее характерны среди упомянутых обменных реакций те, которые протекают под действием хлористых и сернокислых солей. Сернокислый магний, взаимодействуя с Са(ОН)2 цементного камня, образует гипс и гидроксид магния — аморфное вещество, не обладающее связностью и легко вымывающееся из бетона:

Между MgCl2 и Са(ОН)2 протекает реакция

Образовавшийся хлористый кальций хорошо растворяется в воде и уносится фильтрующей водой.

Коррозия цементного камня водами, содержащими свободные углекислоту и ее соли, происходит в такой последовательности. Вначале растворенная углекислота взаимодействует с Са(ОН)2

и образуется труднорастворимый углекислый кальций, что положительно сказывается на сохранности бетона. Однако при высоком содержании в воде СO2 углекислота действует разрушающе на цементный камень вследствие образования легкорастворимого бикарбоната кальция:

Приведенные реакции, схематически характеризующие разрушение цементного камня под действием воды, содержащей растворенные соли, показывают, что основной причиной этого разрушения является содержание в цементном камне (бетоне) свободного гидроксида кальция Са(ОН)2. Если же ее связать в другое труднорастворимое соединение, сопротивление бетона коррозии II вида должно возрасти. Это и имеет место при использовании активных минеральных добавок.

К III виду коррозии относятся процессы, возникающие под действием сульфатов. В порах цементного камня происходит отложение малорастворимых веществ, содержащихся в воде, или продуктов взаимодействия их с составляющими цементного камня. Их накопление и кристаллизация в порах вызывают значительные растягивающие напряжения в стенках пор и приводят к разрушению цементного камня.

Характерным видом сульфатной коррозии цементного камня является взаимодействие растворенного в воде гипса с трехкальциевым гидроалюминатом:

При этом образуется труднорастворимый гидросульфоалюминат кальция, который, кристаллизуясь, поглощает большое количество воды и значительно увеличивается в объеме (примерно в 2,5 раза), что оказывает сильное разрушающее действие на цементный камень.

В результате реакции образуются кристаллы в виде длинных тонких игл, напоминающих под микроскопом некоторые бациллы. Имея такое внешнее сходство и разрушающее действие на цементный камень, гидросульфоалюминат кальция получил название «цементная бацилла». Цемент с низким содержанием трехкальциевого алюмината должен обладать повышенной сульфатостойкостью.

Исключить или ослабить влияние коррозионных процессов при действии различных вод можно конструктивными мерами, путем улучшения технологии приготовления бетона и применения цементов определенного минералогического состава и необходимого содержания активных минеральных добавок.

Читайте также:  Как сделать цемент долговечным

Используя конструктивные меры, предотвратить действие воды на бетонную конструкцию возможно путем устройства гидроизоляции, водоотводов и дренажей. Повышение водостойкости бетона технологическими средствами достигается интенсивным уплотнением бетона при укладке или формовании, использованием бетонных смесей с минимальным водоцементным отношением, с тщательно подобранным зерновым составом заполнителей.

Роль активных минеральных добавок (трепела, опоки, диатомита, доменных гранулированных шлаков) в повышении водостойкости портландцемента рассмотрена ранее.

Источник

Коррозия цементного камня

Коррозия цементного камня проявляется при действии на него агрессивных жидкостей и газов. Наиболее уязвимыми с точки зрения коррозии продуктами гидратации портландцемента являются портландит Са(ОН)2 и гидроалюминат кальция 3СаО·Al2O3·6H2O. Коррозионные процессы в цементном камне в зависимости от причины принято разделять на 3 группы:

Коррозия I вида – растворение составляющих цементного камня, вымывание гидроксида кальция (коррозия выщелачивания). Гидроксид кальция Са(ОН)2 является водорастворимым соединением, а его содержание составляет 10…15% (до 20%) от всех продуктов гидратации портландцемента. Его вымывание происходит весьма интенсивно при действии на цементный камень мягких вод. После вымывания свободного гидроксида кальция начинается разложение гидросиликатов кальция 3СаО·2SiO2·3H2O. Выщелачивание портландита в количестве 15…30% от общего содержания приводит к снижению прочности цементного камня на 40..50% и более.

Основным методом борьбы с коррозией выщелачивания является введение в портландцемент активных минеральных добавок, связывающих водорастворимый портландит в низкоосновные водонерастворимые гидросиликаты кальция. Повысить стойкость бетона к коррозии выщелачивания можно также путем снижения проницаемости бетона за счет использования химических добавок – пластификаторов, гидрофобизаторов и др.

Коррозия II вида – образование легкорастворимых солей при взаимодействии составляющих цементного камня с агрессивными веществами и их вымывание. К данному виду коррозии относят:

Кислотная коррозия проявляется при действии на цементный камень растворов кислот с pH

• В результате данной реакции образуется эттрингит, который занимает в 2…2,5 раза больший объем по сравнению с исходными компонентами реакции. Как было отмечено выше, в процессе твердения портландцемента образование эттрингита играет положительную роль, поскольку его игловидные кристаллы уплотняют структуру и упрочняют цементный камень.

• Образование эттрингита в затвердевшем цементном камне приводит к появлению внутренних растягивающих напряжений и растрескиванию цементного камня (в данном случае эттрингит называют «цементной бациллой»). В железобетонных конструкциях растрескивается, прежде всего, защитный слой бетона, после чего начинается коррозия стальной арматуры. Возможность сульфоалюминатной коррозии всегда необходимо учитывать при строительстве морских сооружений. Основным способом борьбы с сульфоалюминатной коррозией является использование сульфатостойкого портландцемента.

К коррозии III вида относится также щелочная коррозия, которая может происходить под влиянием двух факторов. Первый фактор – непосредственное воздействие щелочи на цементный камень. В этом случае после высыхания насыщенного щелочью бетона, под влиянием углекислого газа в порах бетона образуется сода и поташ, которые, кристаллизуясь, увеличиваются в объеме и разрушают цементный камень. Второй фактор – взаимодействие щелочей цементного камня с реакционноспособными примесями, содержащимися в заполнителях, в особенности, в песке (например, опал, халцедон, вулканическое стекло). Данный вид коррозии может проявляться в появлении трещин, шелушении и вспучивании поверхности бетона.

Дата добавления: 2016-11-22 ; просмотров: 5053 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник